Nonlinearity and fractality in the variability of cardiac period in the lizard, Gallotia galloti: effects of autonomic blockade.

نویسندگان

  • Luis De Vera
  • Alejandro Santana
  • Julian J Gonzalez
چکیده

Both nonlinear and fractal properties of beat-to-beat R-R interval variability signal (RRV) of freely moving lizards (Gallotia galloti) were studied in baseline and under autonomic nervous system blockade. Nonlinear techniques allowed us to study the complexity, chaotic behavior, nonlinearity, stationarity, and regularity over time of RRV. Scaling behavior of RRV was studied by means of fractal techniques. The autonomic nervous system blockers used were atropine, propranolol, prazosin, and yohimbine. The nature of RRV was linear in baseline and under beta-, alpha(1)- and alpha(2)-adrenoceptor blockades. Atropine changed the linear nature of RRV to nonlinear and increased its stationarity, regularity and fractality. Propranolol increased the complexity and chaotic behavior, and decreased the stationarity, regularity, and fractality of RRV. Both prazosin and yohimbine did not change any of the nonlinear and fractal properties of RRV. It is suggested that 1) the use of both nonlinear and fractal analysis is an appropriate approach for studying cardiac period variability in reptiles; 2) the cholinergic activity, which seems to make the alpha(1)-, alpha(2)- and beta-adrenergic activity interaction unnecessary, determines the linear behavior in basal RRV; 3) fractality, as well as both RRV regularity and stationarity over time, may result from the balance between cholinergic and beta-adrenergic activities opposing actions; 4) beta-adrenergic activity may buffer both the complexity and chaotic behavior of RRV, and 5) neither the alpha(1)- nor the alpha(2)-adrenergic activity seem to be involved in the mediation of either nonlinear or fractal components of RRV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between cortical electrical and cardiac autonomic activities in the awake lizard, Gallotia galloti.

ECG and EEG signals were simultaneously recorded in lizards, Gallotia galloti, both in control conditions and under autonomic nervous system (ANS) blockade, in order to evaluate possible relationships between the ANS control of heart rate and the integrated central nervous system activity in reptiles. The ANS blockers used were prazosin, propranolol, and atropine. Time-domain summary statistics...

متن کامل

Nonlinear, fractal, and spectral analysis of the EEG of lizard, Gallotia galloti.

Electroencephalogram (EEG) from dorsal cortex of lizard Gallotia galloti was analyzed at different temperatures to test the presence of fractal or nonlinear structure during open (OE) and closed eyes (CE), with the aim of comparing these results with those reported for human slow-wave sleep (SWS). Two nonlinear parameters characterizing EEG complexity [correlation dimension (D2)] and predictabi...

متن کامل

Interpopulational and seasonal variation in the chemical signals of the lizard Gallotia galloti

Communicative traits are strikingly diverse and may vary among populations of the same species. Within a population, these traits may also display seasonal variation. Chemical signals play a key role in the communication of many taxa. However, we still know far too little about chemical communication in some vertebrate groups. In lizards, only a few studies have examined interpopulational varia...

متن کامل

Phylogenetic relationships of the Canary Islands endemic lizard genus Gallotia (Sauria: Lacertidae), inferred from mitochondrial DNA sequences.

Phylogenetic relationships among species and subspecies of the Canary Island endemic lizard genus Gallotia are inferred based on nucleotide sequences of fragments of 12S ribosomal RNA and cytochrome b mitochondrial genes. The four morphologically established species have also been recognized at the molecular level. Relative affinities among species follow an eastern-western geographic transect....

متن کامل

Regeneration of retinal axons in the lizard Gallotia galloti is not linked to generation of new retinal ganglion cells.

Using anterograde tracing with HRP and antibodies (ABs) against neurofilaments, we show that regrowth of retinal ganglion cell (RGC) axons in the lizard Gallotia galloti commences only 2 months after optic nerve transection (ONS) and continues over at least 9 months. This is unusually long when compared to RGC axon regeneration in fish or amphibians. Following ONS, lizard RGCs up-regulate the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 4  شماره 

صفحات  -

تاریخ انتشار 2008